2,310 research outputs found

    Impact of Forecast Errors on Expansion Planning of Power Systems with a Renewables Target

    Full text link
    This paper analyzes the impact of production forecast errors on the expansion planning of a power system and investigates the influence of market design to facilitate the integration of renewable generation. For this purpose, we propose a stochastic programming modeling framework to determine the expansion plan that minimizes system-wide investment and operating costs, while ensuring a given share of renewable generation in the electricity supply. Unlike existing ones, this framework includes both a day-ahead and a balancing market so as to capture the impact of both production forecasts and the associated prediction errors. Within this framework, we consider two paradigmatic market designs that essentially differ in whether the day-ahead generation schedule and the subsequent balancing re-dispatch are co-optimized or not. The main features and results of the model set-ups are discussed using an illustrative four-node example and a more realistic 24-node case study

    Feature-driven improvement of renewable energy forecasting and trading

    Get PDF
    M. A. Muñoz, J. M. Morales, and S. Pineda, Feature-driven Improvement of Renewable Energy Forecasting and Trading, IEEE Transactions on Power Systems, 2020.Inspired from recent insights into the common ground of machine learning, optimization and decision-making, this paper proposes an easy-to-implement, but effective procedure to enhance both the quality of renewable energy forecasts and the competitive edge of renewable energy producers in electricity markets with a dual-price settlement of imbalances. The quality and economic gains brought by the proposed procedure essentially stem from the utilization of valuable predictors (also known as features) in a data-driven newsvendor model that renders a computationally inexpensive linear program. We illustrate the proposed procedure and numerically assess its benefits on a realistic case study that considers the aggregate wind power production in the Danish DK1 bidding zone as the variable to be predicted and traded. Within this context, our procedure leverages, among others, spatial information in the form of wind power forecasts issued by transmission system operators (TSO) in surrounding bidding zones and publicly available in online platforms. We show that our method is able to improve the quality of the wind power forecast issued by the Danish TSO by several percentage points (when measured in terms of the mean absolute or the root mean square error) and to significantly reduce the balancing costs incurred by the wind power producer.European Research Council (ERC) under the EU Horizon 2020 research and innovation programme (grant agreement No. 755705) Spanish Ministry of Economy, Industry, and Competitiveness through project ENE2017-83775-P

    Impact of Equipment Failures and Wind Correlation on Generation Expansion Planning

    Full text link
    Generation expansion planning has become a complex problem within a deregulated electricity market environment due to all the uncertainties affecting the profitability of a given investment. Current expansion models usually overlook some of these uncertainties in order to reduce the computational burden. In this paper, we raise a flag on the importance of both equipment failures (units and lines) and wind power correlation on generation expansion decisions. For this purpose, we use a bilevel stochastic optimization problem, which models the sequential and noncooperative game between the generating company (GENCO) and the system operator. The upper-level problem maximizes the GENCO's expected profit, while the lower-level problem simulates an hourly market-clearing procedure, through which LMPs are determined. The uncertainty pertaining to failures and wind power correlation are characterized by a scenario set, and their impact on generation expansion decisions are quantified and discussed for a 24-bus power system

    Is learning for the unit commitment problem a low-hanging fruit?

    Get PDF
    The blast wave of machine learning and artificial intelligence has also reached the power systems community, and amid the frenzy of methods and black-box tools that have been left in its wake, it is sometimes difficult to perceive a glimmer of Occam’s razor principle. In this letter, we use the unit commitment problem (UCP), an NP- hard mathematical program that is fundamental to power system operations, to show that simplicity must guide any strategy to solve it, in particular those that are based on learning from past UCP instances. To this end, we apply a naive algorithm to produce candidate solutions to the UCP and show, using a variety of realistically sized power systems, that we are able to find optimal or quasi-optimal solutions with remarkable speedups. To the best of our knowledge, this is the first work in the technical literature that quantifies how challenging learning the solution of the UCP actually is for real-size power systems. Our claim is thus that any sophistication of the learning method must be backed up with a statistically significant improvement of the results in this letterThis work was supported in part by the Spanish Ministry of Science and Innovation through project PID2020-115460GB-I00, by the Anda-lusian Regional Government through project P20-00153, and by the Research Program for Young Talented Researchers of the University of Málaga under Project B1-2019-11. This project has also received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 755705). Finally, the authors thankfully acknowledge the computer re- sources, technical expertise, and assistance provided by the SCBI (Supercomputing and Bioinformatics) center of the University of Málaga. Funding for open access charge: Universidad de Málaga /CBU

    A high dimensional functional time series approach to evolution outlier detection for grouped smart meters

    Get PDF
    Smart metering infrastructures collect data almost continuously in the form of fine-grained long time series. These massive data series often have common daily patterns that are repeated between similar days or seasons and shared among grouped meters. Within this context, we propose an unsupervised method to highlight individuals with abnormal daily dependency patterns, which we term evolution outliers. To this end, we approach the problem from the standpoint of High Dimensional Functional Time Series and we use the concept of functional depth to exploit the dynamic group structure and isolate individual meters with a different evolution. The performance of the proposal is first evaluated empirically through a simulation exercise under different evolution scenarios. Subsequently, the importance and need for an evolution outlier detection method are shown by using actual smart-metering data corresponding to photo-voltaic energy generation and circuit voltage records. Here, our proposal detects outliers that might go unnoticed by other approaches of the literature that have demonstrated to be effective capturing magnitude and shape abnormalities.This work was supported in part by the Spanish Ministry of Science and Innovation through project PID2020-115460GB-I00, and in part by the Andalusian Regional Government through project P20-00153, and in part by the Research Program for Young Talented Reseachers of the University of Málaga under Project B1-2020-15. This project has also received funding from the European Social Fund and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No. 755705)

    Chronological Time-Period Clustering for Optimal Capacity Expansion Planning

    Get PDF
    To reduce the computational burden of capacity expansion models, power system operations are commonly accounted for in these models using representative time periods of the planning horizon such as hours, days or weeks. However, the validity of these time-period aggregation approaches to determine the capacity expansion plan of future power systems is arguable, as they fail to capture properly the mid-terms dynamics of renewable power generation and to model accurately the operation of electricity storage. In this paper we propose a new time-period clustering method that overcomes the aforementioned drawbacks by maintaining the chronology of the input time series throughout the whole planning horizon. Thus, the proposed method can correctly assess the economic value of combining renewable power generation with interday storage devices. Numerical results from a test case based on the European electricity network show that our method provides more efficient capacity expansion plans than existing methods while requiring similar computational needs.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Is learning for the unit commitment problem a low-hanging fruit?

    Get PDF
    The blast wave of machine learning and artificial intelligence has also reached the power systems community, and amid the frenzy of methods and black-box tools that have been left in its wake, it is sometimes difficult to perceive a glimmer of Occam’s razor principle. In this letter, we use the unit commitment problem (UCP), an NP-hard mathematical program that is fundamental to power system operations, to show that simplicity must guide any strategy to solve it, in particular those that are based on learning from past UCP instances. To this end, we apply a naive algorithm to produce candidate solutions to the UCP and show, using a variety of realistically sized power systems, that we are able to find optimal or quasi-optimal solutions with remarkable speedups. To the best of our knowledge, this is the first work in the technical literature that quantifies how challenging learning the solution of the UCP actually is for real-size power systems. Our claim is thus that any sophistication of the learning method must be backed up with a statistically significant improvement of the results in this letter.Universidad de Málaga. Campus de Excelencia Internaciona
    corecore